Problem 1.10

Vectors (and scalars, and tensors) are defined by their behavior under a rotation of the coordinate axes. But it is sometimes of interest to enquire how they might transform (using displacements as a model) under other coordinate changes - translations, say, or inversions.

(a) How do the components of a vector ${ }^{5}$ transform under a translation of coordinates ($\bar{x}=x$, $\bar{y}=y-a, \bar{z}=z$, Fig. 1.16a)?
(b) How do the components of a displacement transform under an inversion of coordinates $(\bar{x}=-x, \bar{y}=-y, \bar{z}=-z$, Fig. 1.16b)?
(c) How do the components of a cross product (Eq. 1.13) transform under inversion? (The cross product of two vectors is called a pseudovector because of this "anomalous" behavior under inversions. It's still a vector - that is determined by its behavior under rotations; where the distinction is at issue I'll call a vector with the "normal" behavior under inversions an ordinary vector.) Is the cross product of two pseudovectors an ordinary vector, or a pseudovector? Name two pseudovector quantities in classical mechanics.
(d) How does the scalar triple product of three vectors transform under inversions? (Such an object is called a pseudoscalar.)

Solution

Consider the displacement vector from $(0,0,0)$ to $(1,2,3)$ in an $x y z$-coordinate system.

[^0]
Part (a)

If the coordinate system gets translated $(\bar{x}=x, \bar{y}=y-a, \bar{z}=z)$, the coordinates of the tail and head of the vector change.

The vector in this new coordinate system is

$$
\begin{aligned}
\overline{\mathbf{r}} & =\langle 1,2-a, 3\rangle-\langle 0,-a, 0\rangle \\
& =\langle 1,2,3\rangle \\
& =\mathbf{r} .
\end{aligned}
$$

Therefore, the components of a vector do not change under a translation of coordinates.

Part (b)

If the coordinate system gets inverted $(\bar{x}=-x, \bar{y}=-y, \bar{z}=-z)$, the coordinates of the tail and head of the vector change.

The vector in this new coordinate system is

$$
\begin{aligned}
\overline{\mathbf{r}} & =\langle-1,-2,-3\rangle-\langle 0,0,0\rangle \\
& =\langle-1,-2,-3\rangle \\
& =-\langle 1,2,3\rangle=-\mathbf{r} .
\end{aligned}
$$

Therefore, the components of a vector become negative under an inversion of coordinates.

Part (c)

The cross product of two vectors, \mathbf{A} and \mathbf{B}, is

$$
\begin{aligned}
\mathbf{A} \times \mathbf{B} & =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} A_{i}\right) \times\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} B_{j}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) A_{i} B_{j} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} A_{i} B_{j} .
\end{aligned}
$$

Under an inversion of coordinates, the components of each vector become negative.

$$
\begin{aligned}
\overline{\mathbf{A} \times \mathbf{B}} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k}\left(-A_{i}\right)\left(-B_{j}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \boldsymbol{\delta}_{k} \varepsilon_{i j k} A_{i} B_{j} \\
& =\mathbf{A} \times \mathbf{B}
\end{aligned}
$$

Therefore, the components of a cross product do not change under an inversion of coordinates, which is unlike the behavior of a normal vector. The cross product of two cross products is

$$
\begin{aligned}
(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D}) & =\left[\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} A_{i}\right) \times\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} B_{j}\right)\right] \times\left[\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} C_{k}\right) \times\left(\sum_{l=1}^{3} \boldsymbol{\delta}_{l} D_{l}\right)\right] \\
& =\left[\sum_{i=1}^{3} \sum_{j=1}^{3}\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) A_{i} B_{j}\right] \times\left[\sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{k} \times \boldsymbol{\delta}_{l}\right) C_{k} D_{l}\right] \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left[\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) \times\left(\boldsymbol{\delta}_{k} \times \boldsymbol{\delta}_{l}\right)\right] A_{i} B_{j} C_{k} D_{l} .
\end{aligned}
$$

Under an inversion of coordinates, the components of each vector become negative.

$$
\begin{aligned}
\overline{(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left[\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) \times\left(\boldsymbol{\delta}_{k} \times \boldsymbol{\delta}_{l}\right)\right]\left(-A_{i}\right)\left(-B_{j}\right)\left(-C_{k}\right)\left(-D_{l}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left[\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right) \times\left(\boldsymbol{\delta}_{k} \times \boldsymbol{\delta}_{l}\right)\right] A_{i} B_{j} C_{k} D_{l} \\
& =(\mathbf{A} \times \mathbf{B}) \times(\mathbf{C} \times \mathbf{D})
\end{aligned}
$$

The cross product of two pseudovectors is a pseudovector as well. Two quantities in classical mechanics that are cross products are angular momentum, $\mathbf{L}=\mathbf{r} \times \mathbf{p}$, and torque, $\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}$.

Part (d)

The scalar triple product of three vectors is

$$
\begin{aligned}
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}) & =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} A_{i}\right) \cdot\left[\left(\sum_{j=1}^{3} \boldsymbol{\delta}_{j} B_{j}\right) \times\left(\sum_{k=1}^{3} \boldsymbol{\delta}_{k} C_{k}\right)\right] \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} A_{i}\right) \cdot\left[\sum_{j=1}^{3} \sum_{k=1}^{3}\left(\boldsymbol{\delta}_{j} \times \boldsymbol{\delta}_{k}\right) B_{j} C_{k}\right] \\
& =\left(\sum_{i=1}^{3} \boldsymbol{\delta}_{i} A_{i}\right) \cdot\left(\sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \boldsymbol{\delta}_{l} \varepsilon_{j k l} B_{j} C_{k}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{i} \cdot \boldsymbol{\delta}_{l}\right) \varepsilon_{j k l} A_{i} B_{j} C_{k}
\end{aligned}
$$

Under an inversion of coordinates, the components of each vector become negative.

$$
\begin{aligned}
\overline{\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{i} \cdot \boldsymbol{\delta}_{l}\right) \varepsilon_{j k l}\left(-A_{i}\right)\left(-B_{j}\right)\left(-C_{k}\right) \\
& =-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3}\left(\boldsymbol{\delta}_{i} \cdot \boldsymbol{\delta}_{l}\right) \varepsilon_{j k l} A_{i} B_{j} C_{k} \\
& =-\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})
\end{aligned}
$$

The scalar triple product becomes negative under an inversion of coordinates, which is unlike the behavior of a normal scalar.

[^0]: ${ }^{5}$ Beware: The vector \mathbf{r} (Eq. 1.19) goes from a specific point in space (the origin, \mathscr{O}) to the point $P=(x, y, z)$. Under a translation the new origin $(\overline{\mathscr{O}})$ is at a different location, and the arrow from $\overline{\mathscr{O}}$ to P is a completely different vector. The original vector \mathbf{r} still goes from \mathscr{O} to P, regardless of the coordinates used to label these points.

